A Genomic Safe Haven for Mutant Complementation in Cryptococcus neoformans

نویسندگان

  • Samantha D. M. Arras
  • Jessica L. Chitty
  • Kirsten L. Blake
  • Benjamin L. Schulz
  • James A. Fraser
چکیده

Just as Koch's postulates formed the foundation of early infectious disease study, Stanley Falkow's molecular Koch's postulates define best practice in determining whether a specific gene contributes to virulence of a pathogen. Fundamentally, these molecular postulates state that if a gene is involved in virulence, its removal will compromise virulence. Likewise, its reintroduction should restore virulence to the mutant. These approaches are widely employed in Cryptococcus neoformans, where gene deletion via biolistic transformation is a well-established technique. However, the complementation of these mutants is less straightforward. Currently, one of three approaches will be taken: the gene is reintroduced at the original locus, the gene is reintroduced into a random site in the genome, or the mutant is not complemented at all. Depending on which approach is utilized, the mutant may be complemented but other genes are potentially disrupted in the process. To counter the drawbacks of the current approaches to complementation we have created a new tool to assist in this key step in the study of a gene's role in virulence. We have identified and characterized a small gene-free region in the C. neoformans genome dubbed the "safe haven", and constructed a plasmid vector that targets DNA constructs to this preselected site. The plasmid vector integrates with high frequency, effectively complementing a mutant strain without disrupting adjacent genes. qRT-PCR of the flanking genes on either side of the safe haven site following integration of the targeting vector revealed no changes in their expression, and no secondary phenotypes were observed in a range of phenotypic assays including an intranasal murine infection model. Combined, these data confirm that we have successfully created a much-needed molecular resource for the Cryptococcus community, enabling the reliable fulfillment of the molecular Koch's postulates.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cloning and heterologous expression of Cryptococcus neoformans CnSRB1 cDNA in Saccharomyces cerevisiae.

In this study, we report the results of cloning, sequencing and functional analysis by complementation test of the putative Cryptococcus neoformans homolog CnSRB1. The nucleotide sequence revealed 63% identity, and the deduced amino acid sequence showed 66 and 64% identity to its respective homolog of Saccharomyces cerevisiae and Candida albicans, respectively. Functional complementation test i...

متن کامل

Molecular and genetic analysis of the Cryptococcus neoformans MET3 gene and a met3 mutant.

The Cryptococcus neoformans MET3 cDNA (encoding ATP sulfurylase) was cloned by complementation of the corresponding met3 mutation in Saccharomyces cerevisiae. Sequence analysis showed high similarity between the deduced amino acid sequence of the C. neoformans Met3p and other fungal ATP sulfurylases. A C. neoformans met3 mutant was made by targeted insertional mutagenesis, which had the expecte...

متن کامل

Cryptococcus neoformans Ilv2p confers resistance to sulfometuron methyl and is required for survival at 37 6C and in vivo

Received 19 November 2003 Revised 16 January 2004 Accepted 27 January 2004 Acetolactate synthase catalyses the first common step in isoleucine and valine biosynthesis and is the target of several classes of inhibitors. The Cryptococcus neoformans ILV2 gene, encoding acetolactate synthase, was identified by complementation of a Saccharomyces cerevisiae ilv2 mutant. C. neoformans is highly resist...

متن کامل

Cryptococcus neoformans histone acetyltransferase Gcn5 regulates fungal adaptation to the host.

Cryptococcus neoformans is an environmental fungus and an opportunistic human pathogen. Previous studies have demonstrated major alterations in its transcriptional profile as this microorganism enters the hostile environment of the human host. To assess the role of chromatin remodeling in host-induced transcriptional responses, we identified the C. neoformans Gcn5 histone acetyltransferase and ...

متن کامل

Isolation and Characterization of a New Peroxisome Deficient CHO Mutant Cell Belonging to Complementation Group 12

We searched for novel Chinese hamster ovary (CHO) cell mutants defective in peroxisome biogenesis by an improved method using peroxisome targeting sequence (PTS) of Pex3p (amino acid residues 1–40)-fused enhanced green fluorescent protein (EGFP). From mutagenized TKaEG3(1–40) cells, the wild-type CHO-K1 stably expressing rat Pex2p and of rat Pex3p(1–40)-EGFP, numerous cell colonies resistant to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015